

Journal of Alloys and Compounds 262-263 (1997) 229-234

Crystal structure and magnetic properties of the uranium germanide U_3Ge_4

P. Boulet, M. Potel, J.C. Levet, H. Noël*

Laboratoire de Chimie du Solide et Inorganique Moléculaire, U.M.R. C.N.R.S 6511, Université de Rennes 1, Avenue du Général Leclerc, 35042, Rennes, France

Abstract

The crystal structure of the uranium germanide U_5Ge_4 was determined and refined from single crystal X-ray diffraction data to R = 0.043, Rw = 0.054. U_5Ge_4 crystallizes in the hexagonal Ti₅Ga₄ (P6₃/mcm) structure type (filled up Mn₅Si₃ type) with the following lattice parameters: a = 8.744(4) Å and c = 5.863(2) Å. Investigation of neighbouring compositions, using X-ray powder diffraction refinements and microprobe analysis, revealed that the binary compound U_5Ge_4 is in equilibrium with the other binary UGe (ThIn type) and U metal dissolving 3% of germanium, whatever the annealing temperature in the range of 1000-1300°C. These results rule out the existence of the binary compositions U_5Ge_3 and U_7Ge , which were previously reported. Magnetic measurements on an annealed polycrystalline powder sample of U_5Ge_4 indicate nearly temperature independent paramagnetic behaviour down to 2 K. © 1997 Elsevier Science S.A.

Keywords: Uranium germanides; Crystal structure; Magnetic properties

1. Introduction

We have recently clarified the most germanium rich part of the binary U-Ge phase diagram by single crystal X-ray diffraction showing [1] that UGe₂ crystallizes in the orthorhombic ZrGa₂ structure type instead of the ZrSi₂ type as was previously claimed [2]. The alloy with nominal composition U_3Ge_4 [2] was also shown to be a two phase mixture, i.e. UGe (ThIn type) [3] and U_3Ge_5 (AlB₂ type) [4]. In the other part of this phase diagram two binary compounds were reported: U_5Ge_3 [2] which was claimed to crystallize with the Mn₅Si₃ structure type and U_7Ge [5] without any X-ray characterisation for the latter, and recently, a superconductive transition has been observed for these two compounds [6] at $T_c = 0.99$ K and 1.40 K, respectively. We report here our investigations by X-ray and microprobe analysis of the region of the binary U-Ge phase diagram with 51=100% U content.

2. Experimental

The polycrystalline ingots were obtained by arc melting stoichiometric amounts of the constituent elements under a high purity argon atmosphere on a water-cooled copper hearth, using a Ti–Zr alloy as an oxygen getter. The materials were used in the form of ingots as supplied by Merck AG. (uranium, 99.8% pure, germanium, 99.999% pure). In order to ensure homogeneity, the arc melted battons were turned over and remelted three times, with weight losses lower than 0.1%. To improve the quality of the crys-

^{*} Corresponding author.

tallites, the arc melted buttons were wrapped in tantalum foils and annealed in the temperature range of 1300-1000°C in a high frequency furnace for several hours.

X-ray powder patterns were collected on an INEL CPS 120 curve multidetector diffractometer, after mixing the samples with pure silicon as standard.

Electronic metallographic examination was performed on some samples, using a scanning electron microscope and a semiquantitative microanalysis of the phases was carried out by an energy-dispersive X-ray microanalyzer.

The single crystal X-ray diffraction data were collected on an Enraf-Nonius CAD-4 four circle diffractometer with the experimental conditions listed in Table 1. The data processing was carried out on a VAX 3100 computer using the MOLEN package [7].

3. X-ray structural determination

Single crystals suitable for crystal structure determination were found in the annealed sample with 63% of U content. The hexagonal lettice constants, determined from least squares analysis of the setting angle of 25 X-ray reflections have the values: a =8.744(4) Å, c = 5.863(2) Å. They differ significantly from those previously reported [2] for U₅Ge₃ (a = 8.58Å, c = 5.79 Å), although the c/a ratio remains unchanged (0.670). The X-ray diffraction intensities were corrected for Lorentz and polarisation effects and an

Table 1

Crystallographic data for U₄Ge₄

Formulae U.G.) = .1
Space group P61/1	mcm, nº193
Crystal dimensions (mm) 0.06)	< 0.06 × 0.12
Linear absorption coefficient (cm ⁻¹) 1134.	7
Lattice parameters (from CAD4):	
a (Å) 8,744	(4)
.€(Å) 5.863	(2)
Unit-cell volume (Å ³) 388.2	(2)
Calculated density (g cm ⁻¹) 12.67	
Formula per unit cell $Z = 2$	
Formula weight (g) 1480.	5
Scan range 1° < ($\theta < 40^{\circ}$
hkl range 0 < h	< 15
0 < k	< 15
0 < 1	< 10
Total observed reflections 975	
Independent reflections with $1 > 3\pi/561$	
Secondary extinction coefficient 1.97 1	0^{-8} corr = 1/(1 + of)
Number of variables 14	a territe tyte grey
Reliability factors	
$\mathbf{R} = \Sigma (\mathbf{F}_{1}) - \mathbf{F}_{2} D / \Sigma (\mathbf{F}_{1}) $	
$\mathbf{R}_{i} = [\mathbf{\Sigma}_{i}] (\mathbf{F}_{i}] - \mathbf{F}_{i} \mathbf{D}^{2} / \mathbf{\Sigma}_{i} = \mathbf{F}_{i}^{2} / \mathbf{\Sigma}_{i} = \mathbf{F}_{i}^{2} / \mathbf{\Sigma}_{i}$	
- A condition of a first well of the O'O'Date	
Goodness of fit GOF 1.15	

absorption correction was applied using the program psiscan. The structure was successfully refined in the centrosymmetric space group P63/mcm. The positions of two independent uranium atoms in 6g and 4d Wyckoff positions were derived using direct methods (program multan) and the positions of two independent germanium atoms in 6g and 2b were obtained from subsequent difference Fourier calculations. The composition of the investigated crystal is thus U₅Ge₄ and no deviations from full occupancies of the atomic sites could be observed. Final refinement, including anisotropic parameters, leads to the conventional factors R(F) = 0.043 and Rw = 0.054. This result reveals that U_5Ge_4 crystallizes in the Ti₅Ga₄ structure type (filled structure of the Mn₅Si₃ type) as was also reported for the stannide U_5Sn_4 [8] and for the antimonide U_sSb_4 [9]. A view of the structure of U_sGe_4 is displayed in Fig. 1, the positional parameters standardized using the program Structure Tidy [10] are listed in Table 2 and the interatomic distance are in Table 3. Each uranium atom U(1) is coordinated by 6 Ge(1) atoms and two other U(1) atoms with a rather short distance of 2.93 Å. Such a short distance close to that found in U metal (2.75 Å in α U and 3.03 Å in β U) was also observed in the other binary UGe [3] (ThIn structure type). These structures are characterized by straight -U-U- chains along the shortest axis, here the c axis of the hexagonal cell. In fact, both the Ti₅Ga₄ and ThIn structure types were also observed in the binary U-Sn system [8].

Two samples with the previously reported compositions U_5Ge_3 and U_7Ge were analysed by SEM either directly after the arc melting process, or after annealing at 1300 and 1000°C, respectively. The Figs. 2 and 3 show representative microstructures of these compositions, revealing nothing but U₅Ge₄ and U metal which solubilise 3% of germanium. The X-ray powder analyses of these samples by least squares refinement of the lattice parameters are listed in Table 4. These refinements reveal a small but significant homogeneity range corresponding to an increase of the lattice parameters with the uranium content. This is in agreement with our microprobe analyses indicating a maximum variation of 2% of the uranium content, i.e. 57.5% instead of 55.5% of uranium for pure U_5Ge_4 . The formation of U₅Ge₃ (63% of uranium) was not observed using SEM or X-ray methods. Thus the compositions U_5Ge_3 and U_2Ge should be considered as two-phase-regions.

On account of these results, the question as to why there is such a large difference between the lattice parameters determined for U_5Ge_4 and those previously reported for the composition U_5Ge_3 [2] is still open. It should be pointed out that the c/a ratio is quite different for the two structure types. For in-

Fig. 1. Ortep view of the structure U_5Ge_4 .

Table 2Atomic parameters for U5Ge4

Atom	U(1)	U(2)	Ge(1)	Ge(2)	
Site	40	бy	бу	2b	
***************************************	1/3	0.2823(1)	0.6217(4)	0.0	
v	2/3	0.0	0.0	0.0	
, 1) 1)	0.0	1/4	1/4	0.0	
Bii	0.37(2)	0.44(2)	0.59(6)	0.32(7)	
B	Bii	0.43(3)	0,76(9)	B ₁₁	
Bii	0.96(3)	0.85(2)	1.05(7)	0.5(1)	
B ₁₂	B ₁₁	B ₂₂	B ₂₂	B ₁₁	
$B_{eq}(Å^2)$	0.57(1)	0.57(1)	0.78(5)	0.37(4)	

 $B_{13} = B_{23} = 0.0.$

The form of the anisotropic displacement parameter is exp $[-1/4(h^2a^{*2}B(1,1) + k^2b^{*2}B(2,2) + l^2c^{*2}B(3,3) + 2hka^*b^*B(1,2) + 2hla^*c^*B(1,3) + 2klb^*c^*B(2,3))]$ where a^* , b^* and c^* are reciprocal lattice constants.

stance, as shown in the Table 5, the c/a ratio is always equal to 0.67 for the filled structure (Ti₅Ga₄ type), and 0.69 for the empty structure (Mn₅Si₃ type). We found the ratio 0.67 for our samples which is exactly the same as for U₅Ge₃. We can postulate that either the reported lattice parameters were measured with a very large uncertainty almost forty years ago, or the change in lattice parameters is due to the presence of impurities. It is worth mentioning here

Table 3			
Inter-atomic	distances	(Å) for	U5Ge4

U(I)	2U(1)	2.931(0)	U(2)	2Ge(2)	2.870(1)
	6Ge(1)	3.107(1)		1Ge(1)	2.968(3)
	6U(2)	3.484(1)		2Ge(1)	2.978(2)
				2Ge(1)	3.049(1)
				4U(1)	3.484(1)
				4U(2)	3.832(1)
Ge(1)	1U(2)	2.968(3)	Ge(2)	6U(2)	2.870(1)
	2U(2)	2.978(2)		2Ge(2)	2.931(0)
	2U(2)	3.049(1)		6Ge(1)	3.618(3)
	4U(1)	3.107(1)			
	2Ge(2)	3.618(3)			
	2Ge(1)	3.622(4)			

that we have recently discovered a new ternary germanide $U_3 TiGe_5$ [13] which crystallizes with the anti- Ti_5Ga_4 structure type ($U_3 TiSb_5$ type [14]) and has quite similar lattice parameters (a = 8.495(1) Å and c = 5.711(1) Å) to those reported for U_5Ge_3 .

4. Magnetic behaviour

Magnetic measurements on an annealed polycrystalline sample were performed using a superconductin, quantum interference device (SQUID) magne-

Composition		Phase analysis	Lattice parameters (Å)					Heat treatment
≪U	e Ge		a	b	c	c/a	v	
50	50	UGe(ThIn type)	9.826(5)	8.941(2)	5.849(2)		<u> </u>	1300°C
52	48	UGe(ThIn type) U ₅ Ge4(Ti ₅ Ga4 type)	9.831(6) 8.739(5)	8.943(5)	5.846(1) 5.859(2)	0.670	387.5	1300°C
55	44	U ₅ Ge ₄ (Ti ₅ Ga ₄ type)	8.744(1)		5.863(2)	0.670	388.0	1300°C
63	37	U ₅ Ge ₄ (Ti ₅ Ga ₄ type)	8.748(7)		5.917(6)	0.676	392.1	Arc melted
63	37	U ₅ Ge ₄ (Ti ₅ Ga ₄ type)	8.770(5)		5.926(6)	0.675	394.7	1300°C
88	12	UsGe4(TisGa4 type)	8.775(4)		5.927(3)	0.675	395.2	1000°C

 Table 4

 X-ray powder analyses of different U-Ge compositions

Fig. 2. Microstructure of the composition U_xGe_3 annealed at 1300°C. The top view shows Uranium (white) dissolving 3% of Ge and U_xGe_3 (black). The lower view shows the difference in hardness of these two phases, as revealed from polishing.

Fig. 3. Microstructure of the composition U_7 Ge annealed at 1000°C. U_5 Ge₄ (black) with 57.5% of uranium and U metal (white) with 3% of Germanium.

Table 5

Comparison of the c/a ratio in the Ti₅Ga₄ and Mn₅Si₃ structure type

Structure type	Compound	Lattice	paramet	References	
		a	С	c/a	
Ti ₅ Ga ₄	U;Ge1	8.744	5.863	0.670	This work
	U _s Sn ₁	9.327	6.230	0.668	[8]
	U ₅ Sb ₁	9.237	6.211	0.672	[9]
	Th ₅ Sn ₄	9.643	6.445	0.668	[11]
	Th ₅ Fo ₄	9.741	6.585	0.676	[12]
Mn ₅ Si ₃	'U _s Ge _s '	8.58	5.75	0.670	[2]
	Th ₅ Sn ₃	9.332	6.477	0.694	[11]
	Th,Pb,	9.411	6.521	0.693	[12]

tometer in the temperature range 2-300 K and in an applied magnetic field of 4 kG.

As shown in Fig. 4, U₅Ge₄ exhibits nearly temperature-independent-paramagnetic behaviour down to 2 K. This feature could be explained by direct overlap between the 5f shells of uranium U(1) along the caxis, according to the short distance between each uranium U(1) atom, and delocalisation of the U(2) 5f electrons, probably occurring via hybridization effects with the s-p shells of the surrounding germanium atoms. However, magnetic ordering with nearly the same magnetic moment for both U(1) and U(2) sublattices was observed in the isostructural antimonide U_sSb_a [9] by neutron diffraction, and we have shown recently [15] that $U_s Sn_4$ also exhibits ferromagnetic ordering. The U(1)-U(1) distance is shorter in the germanide (2.93 Å) than in the antimonide (3.10 Å) or in the stannide (3.11 Å), but all of them are significantly lower than the Hill limit of 3.4 Å below which cooperative magnetic ordering is very rarely encountered due to the delocalization effect.

5. Conclusions

The previously reported binary uranium germanides U_5Ge_3 and U_7Ge were not observed in the course of this study either by X-ray powder and crystal analyses or by microprobe experiments. The corresponding samples are mixtures of the binary U_5Ge_4 and U metal dissolving 3% of germanium, whatever the annealing temperature. U_5Ge_4 was shown from single crystal data to crystallize with the Ti₅Ga₄ structure type. It exhibits nearly Temperaturc-Independent-Paramagnetic behaviour down to 2 K.

References

- P. Boulet, A. Daoudi, M. Potel, H. Noël, G.M. Gross, G. André, F. Bourée, J. Alloys Comp. 247 (1997) 104.
- [2] P. Villars, L.D. Calvert (Eds.), Pearson's Handbook, vol. 3, 1991, 3818.
- [3] P. Boulet, A. Daoudi, M. Potel, H. Noël, J. Solid State Chem. 129 (1997) 113.
- [4] P. Boulet, M. Potel, H. Noël, G. André, to be published.
- [5] T.B. Massalski (Ed.), Binary Alloys Phase Diagrams, vol. 2, 1990, 2017.
- [6] Y. Onuki, I. Ukon, T. Komatsubara, S. Takayanagi, N. Wada, T. Watanabe, Physica B 163 (1990) 368.
- [7] C.K. Fair, in Molen users manual. An Interactive Intelligent System for Crystal Structure Analysis, Delft, Netherlands, 1989.

Fig. 4. Inverse susceptiblity vs. temperature of an annealed polycrystalline sample of U_sGe_4 .

- [8] A. Palenzona, P. Manfrinetti, J. Alloys Comp. 221 (1995) 157.
- [9] J.A. Paixao, J. Rebizant, A. Blaise, A. Delapalme, J.P. Sanchez, G.H. Lander, H. Nakotte, P. Burlet, M. Bonnet, Physica B 203 (1994) 137.
- [10] E. Parthé, K. Cenzual, R. Gladyshevskii, J. Alloys Comp. 197 (1993) 291.
- [11] S. Cirafici, A. Palenzona, P. Manfrinetti, J. Less Com. Met. 90 (1983) 49.
- [12] A. Palenzona, S. Cirafici, P. Manfrinetti, J. Less Com. Met. 92 (1983) 85.
- [13] G.M. Gross, P. Boulet, G. André, H. Noël. to be published.
- [14] M. Brylak, W. Jeitschko, Zeitschrift f
 ür Naturforschung B 49 (1994) 747.
- [15] P. Boulet, H. Noël, to be published.